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Abstract —Several matrix formulations for the microstrip step-discon-
tinuity problem are compared. Although they are theoretically identical,
one of them has an advantage in numerical labor, relative, and absolute
_convergence. Results of this method are checked with other published data
and with those independently obtained by the modified residue calculus
technique.

I. INTRODUCTION

STEP DISCONTINUITY is frequently encountered

in microstrip line circuits and, hence, its analysis is
important for circuit design. There are several approaches
available. When the microstrip is enclosed in a waveguide-
like case, it is possible to calculate the fundamental and
higher order modes in both sides of the step and to impose
the continuity conditions of the tangential field in the cross
section of the shield case at the step location. This process
leads to a system of mode-matching equations. When an
open microstrip line circuit is dealt with, the higher order
modes can become radiation modes which must be in-
cluded in the mode-matching procedure.

In many applications, the so-called waveguide model has
been found useful -for calculation of the scattering at the
microstrip discontinuity [1]-[3]. In this paper, we assume
that the waveguide model is an acceptable technique for
the calculation of the step-continuity problem. In addition,
radiation and surface waves are not considered. The moti-
vation for the present work is somewhat different from
those published. Although a number of numerical data are
presented in the literature [1]-[3], details of the numerical
process are not clear. The objective of the present paper is
not to duplicate the numerical data already available, but
to place some foundation on how these data should be
calculated. We present several alternative formulations.
Although these formulations are theoretically identical, it is
pointed out that the numerical labor and accuracy depend

on the choice of formulation and some are better than .

others.
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The waveguide model of the open microstrip line.

“The best formulation can be decided based on the matrix
size, relative and absolute convergence, and other numeri-
cal considerations. It turns out that the best formulation is
the one we often choose without clear reasoning. The data
for a microstrip step discontinuity are compared with
available data. They are also compared with the modified
residue calculus technique, which serves as an independent
check of the numerical accuracy.

Before starting the formulation, let us briefly review the
waveguide model. In this technique, the uniform microstrip
line of width w, on the substrate of height /4 and relative
dielectric constant e, is replaced with an equivalent paral-
lel-plate waveguide with magnetic side walls (Fig. 1). The
substrate height is kept identical. However, the effective
width w; and the effective dielectric constant €. are used
to define the effective waveguide in such a way that the
effect of the fringing field of the microstrip is taken into
account. Specifically, these effective values are related to
the propagation constant 8 and the characteristic imped-
ance Z; via

€etf = (.B/ko)z
Zy= (1207 \feerr ) (1 / Wege)- 1)

Note that 8 and Z; can be found from a standard analysis
such as the spectral-domain method, from curve fitting, or
an empirical formula, once the structural parameters of the
microstrip line are given.

For the analysis of the step discontinuity, both sides of
the step are replaced with their respective equivalent wave-
guides. Note that the heights of these two waveguides are
identical. Hence, the problem remains a two-dimensional
one as the field is uniform in the y- (vertical) direction.
Also, note that the dominant mode in the equivalent
waveguide is TEM. In the following sections, all structural
parameters used, except 4, are presumed to be the “effec-
tive” ones, unless otherwise stated.
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(a) Waveguide model for symmetric microstrip step discontinu-
ity. (b) Auxiliary geometry for the waveguide problem.

Fig. 2.

II. FORMULATION

The problem under study is the waveguide model for the
microstrip step discontinuity shown in Fig. 2(a). The struc-
ture is assumed to be symmetrical, and the parallel-plate
waveguide is idealized with magnetic side walls. For con-
venience of analysis, an auxiliary structure is introduced in
Fig. 2(b). Only one half of the original structure is consid-
ered because of symmetry, and the transversal magnetic
wall at the discontinuity is recessed to create a new region
C. The original structure is recovered by letting d = 0.

The mode-matching procedure begins by expanding the
tangential electric and magnetic fields at the junction in
terms of the normal modes on both sides of the junction.
For TE,, (n="0,1,---) excitation, we write down the E,
continuity equation

M-1 Y, (B +B )y, 0<x<0
— n=90

Z (A:‘}‘A" )¢an= L—-1

"t Z Cn¢cn(l+pn)a b<x<a

and a corresponding one for H,

M-1
X (47— 47) Y4,
n=0
= Z ( B )Ybn¢bn7 0<x<b
L-1
= Z Cnch¢cn(1_pn)’ bsx<a (2b)
n=0

1019
where
¢an=‘/(€n0/a)cos(kanx)’ kan=(n77/a)
bn =\/(eno/b)cos(kbnx)’ kbn = (n'”/b)
(bcn=\/(€n0/c)cos(kcn(a_x))’ kCn= (nln./c)
€0=1, n=90
2, n+0
and

Y, =y(eki —(n7/a)’) = B,
Ybn=\/(€2k0 (”'”/b))
Y, ‘/(ek —(mr/c))

P, =exp(—28,d).

In (2), ¢,,, ¢, and ¢, are normal modes in Regions A,
B, and C, with propagation constants 8,, v,, and 8,
respectively. 4,7 and B, are the given incident field coeffi-
cients from Regions A and B (usually only one 4, or B, is
considered at a time), while 4,7, B, and C, are the
unknown excited field coefficients in regions A, B, and C,
respectively. p, is the reflection from the magnetic wall in
Region C.

From modal orthogonality, we obtain the linear simulta-
neous equations for the unknown modal coefficients
L-1_

wn(By + B )+ Z mnCo(1+p,)

K-
AY+ A=Y H
= =0

47)= L H

L-1

Z inYerCa(1 = 0,),

m=0,1,2,--- M-1

Yam(Am+— Ybn(B:—B;)

) (3a)
Z H (A}Y+A;)=B:+B,

M-1
Z nm an(A+_A ) me(B Bn—z)’

m=40,1,2,---,K—1

i (A7 +47)=Co(1+,,)

(3b)

Z wmYan( Ay —A4,) =

m cm(1 pm)

m=0,1,2,---,L—1

(3¢)

where

H,,= [ Db X

Scalts

k,,(—1)"sin(k,,b) )

Kim—kiy
= [ Gunben
b .
{ €tfno )1/2(1) 2%, (- 1)"+1sm(kamb)
_( ac 2 k2 — k2
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To condense the above equations, we define the following
matrices:
B

Y, 0
Yy
0 .
Yl= .le ’
i Y, |
i=a,b,c
n=M-1,K-1,L-1,
—1+p0 0 ]
0 1+p,
R=
i 1+p, |
_1_90 0 ]
1-p,
0
R’: -
i 1-p, |
n=L—-1
(2] #-{ete] 5-[2i3
oY, 0 R 01 R
G=[H ! H]

where I is the identity matrix, H is a matrix of size M X K
with generic element H, , as defined above, while H is a
matrix of size M X L with generic element H,,.

Then, the mode-matching equations can be written in
the following matrix form:

at+a =GRd*+Gd~ (4a)
Y,(a*—a")=GY,Rd* —GY,d" (4b)
6(a*+a")=Rd"+d" (40)
GTY,(a* —a”) = Y,RU4* ~ Y, d" (4d)

where superscript T denotes transpose operation, and

_ _ [ By ]
+
A BS
At .
o1 AF —— | pe
g =\ "2 d" =Bz,
0
_AA+4—1_ :
L O -
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and 4~ are column vectors of the excitation terms and
a” and d* are column vectors of the unknown modal
coefficients. All matrices are of size (M X M); this requires
that K+ L =M.

When M — co, we can prove that G™' = G7, Therefore,
(4a) and (4b) are equivalent to (4c) and (4d). Two indepen-
dent vector equations are required to solve for two un-
known vectors. Hence, for four pairs of equations ((4a) and
(4b), (4b) and (4c), (4c) and (4d), and (4d) and (4a)),
substituting one equation into the other in the same pair,
we have eight ways to solve for ¢* and d4~. They are
defined graphically in Fig. 3. The approaches indicated by
a solid arrow are classified as the formulations of the first
kind and those indicated by a dashed arrow are of the
second kind. Altheugh the eight ways of solution are
theoretically equivalent, their numerical behaviors are
somewhat different, especially when the magnetic wall is
introduced at the upper half of the junction (d =0, p,=1).

For general cases d # 0, all the formulations require a
matrix inversion of size (M X M). For our limiting case of
d = 0, special modifications must be made for some cases.
Specifically, 1D and 2B need to invert a (M + L)X(M + L)
matrix and 2C (Appendix A) needs to invert a smaller
(K X K') matrix. Hence, 2C is most attractive to us be-
cause of its potential of numerical efficiency. In the next
section, we will examine the various approaches in terms of
the numerical stability and convergence.

g+
a-

III.

To study the numerical behavior of the various formula-
tions, we have chosen the structural parameters as: a =
100, 5=26.1 (in mils), ¢, =2.2,¢,=2.1. The dominant
mode (TEM) reflection and transmission coefficients at the
junction are calculated by varying the matrix size for
different K /M ratios.

Since formulations 1D and 2B have an apparent disad-
vantage in numerical calculations, they are not considered
here. After extensive studies, we have found that 1A, 1B,
and 1C are numerically identical. Similarly, 2A and 2D are

NUMERICAL RESULTS
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Fig. 4. Convergence study for various formulations: (a) formulation 1A;
(b) formulation 2A; (c) formulation 2C.

numerically identical. Therefore, only three sets of data,
corresponding to 1A, 2A, and 2C, are given.

In each formulation, the indices L, K, and M are
involved. The numerical results are affected by the ratios
among these indices. This is called the relative convergence
phenomenon, and it has been thoroughly discussed in the
literature [4], {5]. It is well known that the best approxima-
tion to the true solution is obtained for L/K=c/b=
73.6/26.1 or M/K = a/b=100/26.1 (refer to as the right
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Relative convergence problem of formulation 1A demonstrated
by field plots.

Fig. 5.

ratio). It is observed that 2A and 2C suffer very little from
the relative convergence problem (Fig. 4(b) and (c)). The
problem is more serious in 1A, as can be seen in Fig. 4(a).
With a ratio of one, the dominant mode reflection coeffi-
cient converges to an incorrect value (curve 4 in Fig. 4(a)).
Curve C is calculated using a ratio of three, which is close
to the right ratio.

The relative convergence effect can be more clearly

-observed from the plot of H, at the junction. The resultant

field calculated by 1A is shown in Fig. 5. In Fig. 5(a), we
plot the fields calculated using a ratio of L/K =28 /10
(very close to the right ratio) and a ratio of 29/9 (higher
than the right ratio). In Fig. 5(b), we compare the field
calculated using a ratio of 27/11 (lower than the right
ratio) and a ratio of 28 /10. It is interesting to note that,
with a higher ratio, the calculated field behaves better on
the magnetic wall discontinuity than on the aperture, while
the opposite is true for field calculated using a lower ratio.
This might seem reasonable because, for a higher ratio, we
use more modes on the magnetic wall than on the aperture
and vice versa for a lower ratio. Fig. 6 shows the resultant
fields calculated by 2C. Different ratios have no noticeable
effect. The fields calculated by 2A behave similar to those
calculated by 2C.
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Fig. 7. Comparison of numerical efficiency.

A’ comparative study on the numerical efficiency for
different approaches has also been done. In this case,
M /K = 4, which is close to a /b, is chosen. The results of
the dominant mode reflection coefficient S[00][00] are
evaluated as a function of the matrix size required and
shown in Fig. 7. In addition, a comparison of how well the
fields of the two sides match at the junction is done
between formulations 2A and 2C. In both calculations, M
is set to 40, K to 10. The result is shown in Fig. 8. The
fields calculated by 2C match as well as, if not better than,
those calculated by 2A. Keep in mind that we have to
invert a matrix of size 40 in 2A, compared to a matrix of
size 10 in 2C. It is now obvious that 2C has definite
advantages over other approaches. This formulation is to
be used for further studies. '

Let us refer back to (2) at this point. In many attempts,
E, in the region b < x < a is not used as H, = 0 there. This
is identical to 2C and, hence, is our preferred choice.

To check the validity of our calculations, we have calcu-
lated the frequency response of a microstrip step discon-
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tinuity using the same parameters given by Kompa [2]. The
results of the dominant mode reflection and transmission
coefficients S[00][00] and S[00][00] are shown in Fig. 9.
They are in good agreement with Kompa’s results. The
small discrepancy is due to the different formulas used for
obtaining the effective width and effective dielectric con-
stant of the waveguide model. Furthermore, we have
checked the results with those independently obtained by
the modified residue calculus technique [6]. The results of
S[00][00] are shown in Table I and Fig. 10 for comparison.
The calculations are performed using Kompa’s parameters.

1V. ConcrusioN

The mode-matching method has been applied to analyze
the microstrip step-discontinuity problem based on the
waveguide model. A comparison has been made among the
various mode-matching solutions based on the matrix size
and relative and absolute convergence. Although they are

- theoretically identical, one of them proves to be most

suitable for numerical calculations. The results by this
method are in good agreement with other published data
and with those independently obtained by the modified
residue calculus technique.
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TABLEI
COMPARISON OF THE RESULTS BY MODE-MATCHING METHOD AND
BY MRCT*
Mode Matching ‘ MRCT

S(%)’(‘go) 0.1837— ;0.02291 0.1837- ;0.02297
S55td0) —0.7856 + j0.2227 —0.7855+j0.2233

*Calculations are performed using Kompa’s parameters at 2
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