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Comparative Study of Mode-Matching
Formulations for Microstrip

Discontinuity Problems ,-”-
TAK SUM CHU, TATSUO ITOH, FELLOW, IEEE, AND YI-CHI SHIH, MEMBER, IEEE

Abstract — Severaf matrix formulations for the microstrip step-discon-

tinuity problem are compared. Although they are theoretically identical,

one of them has an advantage in numerical labor, relative, and absolute

convergence. Results of this method are checked with other published data

and with those independently obtained by the modified residue cafculus

technique.

1. lNTRODUCTION

A STEP DISCONTINUITY is frequently encountered

in microstrip line circuits and, hence, its analysis is

important for circuit design. There are several approaches

available. When the microstrip is enclosed in a waveguide-

like case, it is possible to calculate the fundamental and

higher order modes in both sides of the step and to impose

the continuity conditions of the tangential field in the cross

section of the shield case at the step location. This process

leads to a system of mode-matching equations. When an

open rnicrostrip line circuit is dealt with, the higher order

modes can become radiation modes which must be in-

cluded in the mode-matching procedure.

In many applications, the so-called waveguide model has

been found useful for calculation of the scattering at the

rnicrostrip discontinuity [1]–[3]. In this paper, we assume

that the waveguide model is an acceptable technique for

the calculation of the step-continuity problem. In addition,

radiation and surface waves are not considered. The moti-

vation for the present work is somewhat different from

those published. Although a number of numerical data are

presented in the literature [1]–[3], details of the numerical

process are not clear. The objective of the present paper is

not to duplicate the numerical data already available, but

to place some foundation on how these data should be

calculated. We present several alternative formulations.

Although these formulations are theoretically identical, it is

pointed out that the numerical labor and accuracy depend

on the choice of formulation and some are better than

others.
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Fig. 1. The waveguide model of the open microstnp line

‘The best formulation can be decided based on the matrix

size, relative and absolute convergence, and other numeri-

cal considerations. It turns out that the best formulation is

the one we often choose without clear reasoning. The data

for a microstrip step discontinuity are compared with

available data. They are also compared with the modified

residue calculus technique, which serves as an independent

check of the numerical accuracy.

Before starting the formulation, let us briefly review the

waveguide model. In this technique, the uniform microstrip

line of width WOon the substrate of height h and relative

dielectric constant c, is replaced with an equivalent paral-

lel-plate waveguide with magnetic side walls (Fig. 1). The

substrate height is kept identical. However, the effective

width Weff and the effective dielectric constant c,ff are used

to define the effective waveguide in such a way that the

effect of the fringing field of the microstrip is taken into

account. Specifically, these effective values are related to

the propagation constant ~ and the characteristic imped-

ance ZO via

feff = (~/ko)2

20= (120 T/Q)(A/weff). (1)

Note that ~ and ZO can be found from a standard analysis

such as the spectral-domain method, from curve fitting, or

an empirical formula, once the structural parameters of the

microstrip line are given.

For the analysis of the step discontinuity, both sides of

the step are replaced with their respective equivalent wave-

guides. Note that the heights of these two waveguides are

identical. Hence, the problem remains a two-dimensional

one as the field is uniform in the y- (vertical) direction.

Also, note that the dominant mode in the equivalent

waveguide is TEM. In the following sections, all structural

parameters used, except h, are presumed to be the “effec-

tive” ones, unless otherwise stated.
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where

oan=J(~no/~)cos(~.nx), ku. =(nm/a)

+hn ‘J(~no/b)cos(kb.~), kb. = (nr/b)
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Fig. 2. (a) Waveguide model for symmetric microstrip step discontinu-

ity. (b) Auxiliary geometry for the waveguide problem.

II. FORMULATION

The problem under study is the waveguide model for the

microstrip step discontinuity shown in Fig. 2(a). The struc-

ture is assumed to be symmetrical, and the parallel-plate

waveguide is idealized with magnetic side walls. For con-

venience of analysis, an auxiliary structure is introduced in

Fig. 2(b). Only one half of the original structure is consid-

ered because of symmetry, and the transversal magnetic

wall at the discontinuity is recessed to create a new region

C. The original structure is recovered by letting d = O.

The mode-matching procedure begins by expanding the

tangential electric and magnetic fields at the junction in

terms of the normal modes on both sides of the junction.

For TE~o (n =’0,1, . . . ) excitation, we write down the E,

continuity equation

M–1

z (~:+~;)+an=
~=()

[

and a corresponding one

~=()

(2a)

for Hx

~=o

L–1

= ~ CY+ (I-pn), b<x<a (2b)n cn cn
~=o

P.= exp(–2~Bnd).

In (2), +=.> +hn, and +.. are normal modes in Regions ~,

B, and C, with propagation constants /3~, y., and /?~,

respectively. A.+ and B.– are the given incident field coeffi-

cients from Regions A and B (usually only one A; or Bn- is

considered at a time), while A j, Bn+, and C. are the

unknown excited field coefficients in regions A, B, and C,

respectively, p. is the reflection from the magnetic wall in

Region C.

From modal orthogonality, we obtain the linear simulta-

neous equations for the unknown modal coefficients
K–1 L–1

~;+~;= ~ H~n(B: +Bn-)+ ~ fi&(l+pn)
~=o n=O

K–1

Yaw(A;– A;)= ~ H~nybn(~; – %-)
n=O

L–1

)+ X ‘mnycnCn(l – Pn ?
~=()

m = 0,1,2,... ,34-1 (3a)
M–1

~ %n(A:+A;)=B:+B;
“=0

M–1

~ Hnmyan(~:-~; )=ybm(B; -B;),
~=()

m = 0,1,2,... ,K–1 (3b)
M–1

~ znm(A:+ A;) =Cm(l+pm)
~=o

M–1

~ zfnmYan(A; -A;)= cmYcm(l - pm),
~=o

m = 0,1,2,... ,L–1 (3c)

where

/
Hmn = b@aM@bndx

o

‘(%?)l’2(i)(2ka”(i;::;:
J@m.= ~aknkndx
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To condense the above equations, wedefine the following

matrices:

y=

R=

R!=

o

l+po o -
0 l+pl

I–p. o

I–pl

o

i=a, b,c
n= M–l, K–l, L–1,

l+pn

,..

l–pn

G= [HI j7]

where I is the identity matrix, H is a matrix of size M X K

with generic element H~n as defined above~while @ is a

matrix of size M X L with generic element H~..

Then, the mode-matcking equations can be written in

the following matrix form:

a++a– = G@’+ Gd- (4a). .

Ya(g+ – g- ) = GY~i?@+ – GY# (4b)

G~(g++g-)=F~++d- (4C)

GTYa(g+– g-) =Y~~’~+– Y~~- (4d)

where superscript T denotes transpose operation, and

B;

11-[/

A; B1-
A;

a+= Al d-= B;_l
——-—

0
A~_l

0

$E!EZ!*
2B

Fig. 3. Classification of formulations.

g+=

q + and ~– are column vectors of the excitation terms and
a– and “-~+ are column vectors of the unknown modal

coefficients. All matrices are of size (M x M); this requires

that K+ L=A4.

When M --+ m, we can prove that G-l= GT. Therefore,

(4a) and (4b) are equivalent to (4c) and (4d). Two indepen-

dent vector equations are required to solve for two un-

known vectors. Hence, for four pairs of equations ((4a) and

(4b), (4b) and (4c), (4c) and (4d), and (4d) and (4a)),

substituting one equation into the other in the same pair,

we have eight ways to solve for g + and d–. They are

defined graphically in Fig. 3. The approache~ indicated by

a solid arrow are classified as the formulations of the first

kind and those indicated by a dashed arrow are of the

second kind. Although the eight ways of solution are

theoretically equivalent, their numerical behaviors are

somewhat different, especially when the magnetic wall is

introduced at the upper half of the junction (d= O, pn =1).

For general cases d + O, all the formulations require a

matrix inversion of size (M X M). For our limiting case of

d = O, special modifications must be made for some cases.

Specifically, lD and 2B need to invert a (M + L) x (M + L)
matrix and 2C (Appendix A) needs to invert a smaller

(K X K) matrix. Hence, 2C is most attractive to us be-

cause of its potential of numerical efficiency. In the next

section, we will examine the various approaches in terms of

the numerical stability and convergence.

III. NUMERICAL RESULTS

To study the numerical behavior of the various formula-

tions, we have chosen the structural parameters as: a =

100, b = 26.1 (in roils), c1 = 2.2, c~ = 2.1. The dominant
mode (TEM) reflection and transmission coefficients at the

junction are calculated by varying the matrix size for

different K/M ratios.

Since formulations lD and 2B have an apparent disad-

vantage in numerical calculations, they are not considered

here. After extensive studies, we have found that 1A, 1B,

and lC are numerically identical. Similarly, 2A and 2D are
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4. Convergence study for various formulations: (a) formulation 1A;

(b) formulation 2A; (c) formulation 2C.

numerically identical. Therefore, only three sets of data,

corresponding to 1A, 2A, and 2C, are given.

In each formulation, the indices L, K, and M are

involved. The numerical results are affected by the ratios

among these indices. This is called the relative convergence

phenomenon, and it has been thoroughly discussed in the

literature [4], [5]. It is well known that the best approxima-

tion to the true solution is obtained for L/K= c/b=

73.6/26.1 or M/K= a/b= 100/26.1 (refer to as the right
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Fig. 5. Relative convergence problem of formulation 1A demonstrated

by field plots.

ratio). It is observed that 2A and 2C suffer very little from

the relative convergence problem (Fig. 4(b) and (c)). The

problem is more serious in 1A, as can be seen in Fig. 4(a).

With a ratio of one, the dominant mode reflection coeffi-

cient converges to an incorrect value (curve A in Fig. 4(a)).

Curve C is calculated using a ratio of three, which is close

to the right ratio.

The relative convergence effect can be more clearly

-observed from the plot of Hx at the junction. The resultant

field calculated by 1A is shown in Fig. 5. In Fig. 5(a), we

plot the fields calculated using a ratio of L/K= 28/10

(very close to the right ratio) and a ratio of 29/9 (higher

than the right ratio). In Fig. 5(b), we compare the field

calculated using a ratio of 27/11 (lower than the right

ratio) and a ratio of 28/10. It is interesting to note that,

with a higher ratio, the calculated field behaves better on

the magnetic wall discontinuity than on the aperture, while

the opposite is true for field calculated using a lower ratio.

This might seem reasonable because, for a higher ratio, we

use more modes on the magnetic wall than on the aperture

and vice versa for a lower ratio. Fig. 6 shows the resultant

fields calculated by 2C. Different ratios have no noticeable

effect. The fields calculated by 2A behave similar to those

calculated by 2C.
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A comparative study on the numerical efficiency for

different approaches has also been done. In this case,

M/K = 4, which is close to a/b, is chosen. The results of

the dominant mode reflection coefficient S[00][0 O] are

evaluated as a function of the matrix size required and

shown in Fig. 7. In addition, a comparison of how well the

fields of the two sides match at the junction is done

between formulations 2A and 2C. In both calculations, M

is set to 40, K to 10. The result is shown in Fig. 8. The

fields calculated by 2C match as well as, if not better than,

those calculated by 2A. Keep in mind that we have to

invert a matrix of size 40 ‘in 2A, compared to a matrix of

size 10 in 2C. It is now obvious that 2C has definite

advantages over other approaches. This formulation is to

be used for further studies.

Let us refer back to (2) at this point. In many attempts,

EY in the region b < x < a is not used as HX = O there. This

is identical to 2C and, hence, is our preferred choice.

To check the validity of our calculations, we have calcu-

lated the frequency response of a microstrip step discon-
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Fig. 8. Comparison of field plot between formulation 2A and 2C. (a)
2A, (b) 2C.

tinuity using the same parameters given by Kompa [2]. The

results of the dominant mode reflection and transmission

coefficients S[00][0 O] and S[00][0 O] are shown in Fig. 9.

They are in good agreement with Kompa’s results. The

small discrepancy is due to the different formulas used for

obtaining the effective width and effective dielectric con-

stant of the waveguide model. Furthermore, we have

checked the results with those independently obtained by

the modified residue calculus technique [6]. The results of

S[00][0 O] are shown in Table I and Fig. 10 for comparison.

The calculations are performed using Kompa’s parameters.

IV. CONCLUSION

The mode-matching method has been applied to analyze

the microstrip step-discontinuity prablem based on the
waveguide model. A comparison has been made among the

various mode-matching solutions based on the matrix size

and relative and absolute convergence. Although they are

theoretically identical, one of them proves to be most

suitable for numerical calculations. The results by this

method are in good agreement with other published data

and with those independently obtained by the modified

residue calculus technique.
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TABLE I
COMPARISONOFTHERSSULTSBY MODE-MATCHING METHOD AND

BY MRCT*

Mode Matching MRCT

X&lo) 0.1837 – jO.02291 0.1837 – jO.02297

$4#o) – 0.7856+ jO.2227 – 0.7855+ jO.2233

*Calculations are performed using Kompa’s parameters at 2
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